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We present a method based on interpolating moving least-squares (IMLS) that is designed for efficient and
accurate local fitting of discrete energy values to provide global representations of potential energy surfaces
(PESSs) for many-atom systems. We have demonstrated the method with one-, two-, and three-dimensional
fits of the HN, — N, + H PES. To allow for extensive fitting and testing, the analytical PES developed by
Koizumi et al. [Koizumi, H.; Schatz, G. C.; Walch, S.R.Chem. Physl991, 95, 4130] was used to generate
energy values. Unlike the modified Shepard method this approach does not require derivatives, thus it can be
used to fit energies computed using highest-level quantum chemistry methods for which forces are not directly
obtainable. This fitting scheme accurately describes the PES, is not computationally time-consuming, can be
improved by using higher degrees and larger numbers of basis functions, and is straightforward to apply.
Extension to many-dimensional PESs seems promising.

1. Introduction practical local fitting approach in 1994. It is based on a modified
Shepard interpolatioH, the simplest case of IMLS. The Shepard
method?13 is a zero-degree IMLS method (ZD-IMLS). A
serious problem with ZD-IMLS, referred to as the “flat-spot”
phenomenon, is that the derivative of the interpolant is zero at
every data point. This prevents the straightforward use of the
hepard method; however, the “flat-spot” problem can be
avoided by using Taylor expansions instead of just data p#ints.

The speed with which quantum chemistry calculations can
now be done allows for the direct use of ab initio forces in
molecular dynamics simulations. This has obvious advantages
over using global analytical representations, which involves the
tedious, arduous task of selecting appropriate functions and the
adjusting many parameters. Despite the ease with which direct

dynamics simulations can be done, the approach is not generally . . .
applicable. A major lingering problem, which will be solved in An attractive feature of the IMLS approach is that it can be

time, is that the levels of theory that must be used to make the coupled ‘.Nith dynamics ;imulationg to bias the fitti.ng. Ischtvyan
calculations feasible are often inadequate for reactions. The errorandthcg”'nﬁ. hr?ve applletdh a qud'ft'.ed Shtet%ardd ||:terp(_)lz;1t|ofn
in ab initio results is dealt with in fitting schemes by simply method, which requires the derivatives at the data points, for
scaling them to empirical data. Even when high-level quantum constructing PESs by combining it with classical trajectory

results are accurate, it is not always possible to directly computetsr']mu""‘tf'onS |_rll_ha}n '|tteratt'|ve scherge for Isuccesswe(;y tlmprqvtlng
the ab initio forces needed for the trajectory integrations. Despite € sur a??ﬁ 'SI‘_f' era ![\k/]etprocg uretp ?((:jes new "a a pgln S |r:
the prospects for straightforward ab initio dynamics simulations, regions of tne surtaces that are important dynamically, and, mos

there is still a need to develop better methods for fitting analytic |mporltatntlly, tr;e prtocded_ll_Jr:e IS El.he;entlydsljlmplg and can ze.
potential energy surfaces (PESS). completely automated. The gradients and Hessians required in

Fitting ab initio PESs is still more an art than a science. It this method are not available in higher-level ab initio calcula-

requires considerable skill and insight to select the best analyticalt'ons'. This approach has be;” refined and applied to various
functions and a lot of persistence to adjust the parameters. Globafe"’mIonS by several groups. . .

functions offer simplicity at the expense of flexibility. That Apart from the Taylor series, the kllgher—de"gree IMLS
prompted us in the 1970s to propose use of a scheme based oﬂqeth(.)ds%3 can be usgd to solvg the flat-spot problgm.
local fitting with cubic splines. They provide a very flexible McLain3® studied two-dimensional fits for some simple functions

and numerically efficient approach to fitting a surface with using zero-, first-, second-, third-, and forth-degree IMLS
smooth first and continuous second derivatives. They have method§. H|§ fits were based on a tradeoff of accuracy agglnst
mainly been used to fit 3-D surfacés] because they require a C%mf]“t'“g t'm‘é' O:Sh'da and Sch;iﬁtz;r)]resentﬁld af scheme in
fairly high density of points for a good fit. The challenge is to Which a second-degree IMLS (which we will refer to as SD-
achieve highly accurate, smooth fits of ab initio data with small IMLS) Tethoq IS (r:]orr;1p|nhed é‘”th Shepard mter:pglgnon. Th?d
numbers of data points and adjustable parameters. Significantreason or using the higher-degree IMLS metho '_S to avol
progress has been made over the past decade in developin%qe need for derivatives. The scheme has two steps: firstis the
systematic, general methods for achieving suctffité Perhaps valuation of first and second derivatives at the data points by
the more useful approaches are the interpolating moving Ieast-'.[he SD-IMLS method. In the second step, Shepard mterpolathn
squares (IMLS) methods, which have been extensively applied is used to evaluate energies and derivatives at other geometries

to small systems. Ischtwan and Colfiiistroduced a much more  USing the information obtained from the first step.
The interpolation method presented here is the higher-degree

* To whom correspondence should be addressed. Dit@okstate.edu. IMLS approach directly applied to the fitting of PESs. This
T Part of the special issue "Donald J. Kouri Festschrift". approach can be regarded as a natural generalization of the

10.1021/jp030144a CCC: $25.00 © 2003 American Chemical Society
Published on Web 06/07/2003



Fitting Potential Energy Surfaces J. Phys. Chem. A, Vol. 107, No. 37, 2008L19

Shepard interpolation that leads to the elimination of the “flat- N

spot” problem. It can be regarded as an extension of McLain's E(p) = ) w(X)[p(x%) — fi]2 (2)
work38 to chemically relevant problems. It can be regarded as =

a simplification of Ishida and Schatz's wéfkin that no
calculation of the energy gradient and second derivatives, as
required by the modified Shepard interpolation, is performed.
A full evaluation of higher-order IMLS methods for fitting PESs

where wi(x) are positive weight functions with asymptotic
behaviorwi(x) — o asx — x. The most popular choices for
the weight functions are

requires the resolution of many issues. What is the interplay of 1
degree/accuracy/computational efficiency? How do the form and W) = ———— (3a)
parameter values of the weight function (explicit in all IMLS (x—=x)

methods) affect that interplay? How does ab initio point selection ,
affect that interplay? What are the scaling properties of the . exp[—(X — x)°]
method as the dimensions of the PES rise? What are the wi(x) = (x— A)Zn
advantages and disadvantages of this method compared to %
competitive methods? This paper wilbt attempt to answer all
these questions. Rather it will develop a simple first-degree
IMLS fit to a chemically realistic PES in order to see if the
quality of the fit and the simplicity of the method merit a more
detailed evaluation of the general high degree IMLS approach. 5\, (5. — .
This paper thus constitutes an initial or preliminary report on [ZW'(X)X'O]aO Tt [zwl(x)x,m]am ZW'(X)f'
the approach. [Y widxlag+ ..+ [ 3 W00x™ an = 3 w0

We chose for our test PES, the analytic function developed .
by Koizumi et al® for the simple HN — H + N, dissociation :
reaction. We selected an analytical PES to avoid the more costly (). (3)y 2 —  (3) e ME
procedure of calculating ab initio points. This allowed us to do [Zvv,(x)xm]ao T [zwl(x)x, an ZW'(X)X'HT'@)
extensive testing of variations of the scheme while making direct
comparisons of fits to the “exact” potential. Since the Koizumi The polynomial giving the lowest value & can be defined
et al5 PES is a close fit to an extensive set of ab initio points, by solving eq 4 and using these solutions as the coefficients
this test case is fully realistic. The triatomic N~ H + N3 is for the polynomial. We should note that the normal equations
a bond fission reaction, making for a rather smooth PES of low for the least-squares method can be obtained from eq 4 by the
dimensionality that is appropriate for an initial test of a fitting choice of weightsm(x) = 1,i =0, 1, ...,N.
method. The focus of this study was on determining the best It is customary, useful, and convenient to write eq 4 in the
local fitting functions and procedure; thus we have applied the matrix-vector form:
scheme to one-, two-, and three-dimensional sections of the
surface. B"W-B-a=B"-W-f (5)

The method is described in Section 2, the fitting scheme to
obtain the global potential in Section 3, the application of the
method to HN in Section 4, and a summary and the conclusions

(3b)

wheren is a small positive integer.
The normal equations are found by considering ring- 1
necessary conditiond,/da; = 0,i =0, 1, ...,m:

whereB is aN x (m+ 1) matrix, andBT is its transposeWV is
an N x N diagonal matrix, andh andf are column vectors.
They have the following forms:

in Section 5.
1% X" f
2. Method m % 0
g=|[1 % % a= 2| f=|h
Before describing the IMLS method, it is useful to review : ‘ f
the least-squares and weighted least-squares methods. We follow 1 Xy ... XN”‘ anm N
Lancaster and Salkauskéand discuss the basic aspects of these )
methods for the one-dimensional case. W = diagwy(X),w;(X),... Wy(X)] (6)

Consider data that consists Nf+ 1 abscissa§x;; i =0, 1,
..., N} with ordinateqfi; i = 0, 1, ...,N}. The polynomial$(x)
= 3" jax, wherep(X) € #andm < N (4, denotes the set of
all polynomialsp with degree not exceeding, together with
the zero polynomial), are used to fit the data, with the deviation
of p(x) from f; at x; beingp(x) — fi. The sum of the squared
deviations for anyp € 4, is

In the highly unusual case ofi= N, eq 5 can be simplified
to B-a =f, sinceB is then a square matrix with a well-defined
inverse. Note thatV does not appear in this simplification
because the number of unknown parameters is exactly equal to
the number of constraints and the least-squares procedure can
exactly satisfy the constraints no matter what weight they are
assigned. The matriB, which is known as a Vandermonde
N matrix, is ill conditioned? and a direct algebraic approach is
Em =S Ipx) — f_]z 1) not reco_mmended for a general-pur_pose computer code (even
% ! for the simplest case of normal equations); rather than use matrix
inversion one should use a more reliable numerical method, e.g.,
the singular value decomposition (SVD) metHéd.
Whenm = 0, the normal equations, eq 4, reduce to a single
equation:

=
The best least-squares fit is obtained by finding a polynomial
€ 9, for which E is minimized.

In the weighted least-squares method the valuey,othe
function used to fit the curve, at a poirtis determined by N N
giving greater weights to the dakaat pointsx; that are closest ay(x) = Wi(X)fi/ Wi(x) 7
to x. Thus, instead of eq 1 we minimize = =
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This equation is credited to Shepdfdivhenw;(x) = (x — x)™" denote linearly independent functions defined on the whole 3-D
with n > 0, it is easy to see that for® n < 1 the interpolating surface. For example, according to eq 12, the least-squares
curve has cusps at the data points, rior= 1 the fitted curve approximation with bivariate quadratic polynomials requires 10
has corners at the data points, and for 1 it exhibits the of these functions (for a 2-D surface it is six).

“flat-spot” phenomenon, that is, the derivative of the interpolant ~ The interpolant has the form:

is zero at the data points (see section 4). There are several causes

of this. First of all, there is a singularity in one of the elements n

of weight functionw and the coefficients of eq 5 are not defined u(l) = Zaj(l)bj(l) (13)

at data points, which causes the lack of smoothness near the =

data points not only in the Shepard method but also in higher-
degree IMLS methods (see section 4). There are two different
ways to resolve this problem. First, to avoid arithmetic overflow
McLain®8 suggested using(— x)2" + ¢ instead of ¥ — x)2"

in the denominator of the weight function in eq (3b); that is,

where theay, ay, ..., a, coefficients can be determined from the
normal equations in the same manner as in the one-dimensional
' case, only with replacing by I.

The Euclidean distance between poihts (x,y,2) andl; =
(%.yi,2) is

exp[—(x — x)?
wi(x) = M ® di) = Jx—x?+ -y’ +@E-2°  (14)
(x=x)"te
Since the weighting depends on the distance between points,
wheree is a small positive number. Also, the singularities of the weightswa(l), wa(l), ..., wn(l) will depend on the function
W can be avoided by dividing both sides of eq 5Bly,wi(X), w(d), wherew — o asd — 0 and vice versa. It is clear that the
then eq 5 becomes weight functions are similar to those for the one-dimensional

- T case eq 8; withd replacingx — x;, it has the form
B'-V:-B:a=B -V-f 9)

_ . —ad?;, 2n
where V = diag[vi(),22(9),..on0d] and z(x) = wx)/ w(d) = e "/(d™ + €) (15)
ZiNzowi(x), j = 1,2,.N. The y(x) are normalized weight \yherea is a positive number.

functions and have the following properties: As in the one-dimensional case, we consider an interpolant
(1) wi(x) = 9; (Kronecker delta) for, j = 1, 2, ...,N; with four basis functions for the 3-D surface (three monomials
(2) 0= vi(x) = 1 for all x andzi(x) = O if and only ifx = for 2-D) to avoid the “flat-spot” phenomenon. Thus, we have
¥ andj = i; four normal equations and the interpolant has the form
(3) SN ui(x) = 1 for all x; and
(4) vi(x) — N7t asd(x,0) — . u(x,y,2) =
We followed McLain’s suggestion in this work. The intro- a,(xy,2) + a, (XY, 29X + ag(xy,2y + a,(xy,2z (16)

duction of e removes the singularity in the Shepard method,

but the “f|at-SpOt" problem perSIStS for small enough values of Whereal(xly,z), az(xly’z)’ a3(X,ylz)' anda4(X,ylz) can be defined

€. from the normal equations. The functions given in egs 11 and
There is a way to solve the “flat-spot” problem without 16 are the fitting functions used in the method presented in this

sacrificing the quality of the fitting? Consider then=1case,  paper. We will refer to this as the first-degree IMLS (FD-IMLS)

for which eq 4 gives a pair of normal equations: method.
_ We will have occasion to calculate gradients with the FD-
[ZWi(X)]ao + [zWi(X)Xi]al = zWi(X)fi IMLS method. For convenience, the gradients will be calculated
o by central finite differencing.
[Zwi(x)xi]ao + [Zwi(x)xi la, = Zwi(x)xifi (10) Our calculations were performed on the IBM RS/6000 7043

model 260 workstations (512 MB memory, one 200 MHz
processor) and took only a few seconds to fit the 2-D and 3-D

g(¥) = a,(X)x + ay(x) (11) “global” surfaces.

The interpolation function has the form

whereay(x) andag(x) can be obtained from eq 10. If the weight 3- Potential Energy Values

function is not Singular, then this function is free of “ﬂat-SpOt" A|th0ugh our focus is on methods that can be used taHfit

problems. The same is true for all higher-degree forms of IMLS. jnjtio energies to obtain “analytical” representations, we have
To construct an IMLS method for surfaces, which is similar chosen to avoid the expense of Carrying out quantum chemistry

to the procedure considered above for the one-dimensional casegalculations. Instead, we have used an analytical function to

we introduce the basis functions (monomials) for three classescompute points that we then fit or use to evaluate the fits. This

of three-variable polynomials (the monomials for two-variable permits more extensive testing of the method than we could

polynomials are easily obtainable by deleting one variable): have done had we uset initio points.

The data points used in the fitting and evaluations of the

Y 1 results were obtained from the global function for the reaction
S 1xyz HN2; — N2 + H developed by Koizumi, Schatz, and Wakh.

This global potential is based on the rotated Morse oscillator
P AXYyzZRY'Zxyxzyz (12) approach4land is written in terms the coordinatgsr, and

0; whereR s the distance between the H and the center of mass
For convenience the notatiorx,Y,2) for a point on the 3-D of Ny, r is the N—N distance, and is the angle between the
surface is abbreviated 1o hence the data points are denoted Jacobi vector® andr, such tha®® = 0° corresponds to linear
by li = (%,vi,z),1 =1, 2, ...,N. Let by(l), bx(l), ..., ba(I) (n < N) HNN. We computed points that span the rangesR9 R <
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0.25 curve) is shown in Figure 1b and clearly illustrates a better
(though not perfect) representation of the potential. The average
(@) absolute rms deviation between the fitted curve and 301 exact
0.20 1 points, computed with the Koizumi et.aPES, is 9.34x 104
hartree. We have used 61 data points in the fitting with the
weight function given by eq 8 with =5 ande = 1.5 x 10713,

We calculated the gradients of the energy (numerically) to
examine the smoothness of potential. The average absolute rms
010 1 deviation for the gradients is 1.82 1072 au for 301 points.

In Figure 2 the FD-IMLS fit of the 2-D HN (8 = 45°)

0.05 - potential using different numbers of data points are superim-
posed on the exact surface computed by using the Koizumi et
al> analytic function. The fits in Figure 2 were obtained by
using the weight function of eq 15, with= 3, a = 0.08, and

€ =1 x 1074 (64 data points)s = 1 x 107° (105 data points),
ande = 5 x 1077 (217 data points). Figure 2a,b,c illustrates a
0.25 direct comparison of the exact surface with those obtained by
FD-IMLS fitting using 64, 105, and 217 data points, respec-
(b) tively. The fit is worst in the areas close to the edges of the
surface. The fit improves with increasing number of data points
as the results in Figure 2 illustrate. Also, a much better fit could
045 | be obtained by using a nonuniform grid; however, we have not
explored this since our purpose here was to make direct
comparisons to demonstrate the present method.

A quantitative comparison of the two surfaces is more
meaningful, thus we computed the average absolute rms
deviations of the potential and gradients between the exact
surfacé and surfaces constructed by FD-IMLS fitting using
different numbers of data points and values of the parameters
(e, n) in the weight function, eq 15. The rms deviation for the
two best fits, i.e., best choices of values éandn, are given

R (H-NN) in Table 1. The average absolute rms deviations of the values
Figure 1. Potential energy for HN— H + N alongR for 6 = 0° of the potential energy and gradient are based on 18 361 points.
andr = 2.0a,. The dash lines present curves calculated by Koizumi et As expected, the rms error decreases with increasing number
als code and the solid lines correspond to (a) Shepard interpolation 5f qata points. The fit with weight function parameter= 3 is
and (b) FD-IMLS. better than that witm = 5. The difference in the rms values
for n = 3 andn = 5 is larger for the potential than for the
gradients.

We have also used the FD-IMLS method to fit the 3-D PES
for HN,. We calculated points that span the ranges given in
section 3. Again, we computed the average rms deviations of
the potential and the gradients between the Koizumi &t al
surface and the FD-IMLS fits for different numbers of data
points (2688, 4590, 11 914) and weight function parameters (
= 3 and 5). Table 2 shows the rms values based on 407 050
4. Results points. It i; clear that the fit improves with increasing of number

) of data points. The rms values for the energy are betten for

The main goal in this initial study was to test the FD-IMLS 3 than forn = 5. However, for the gradients it is the opposite.
method. We eventually want a fitting method that is highly One might expect the fitting errors for the potential and gradients
accurate and applicable to many-dimensional systems. We beginfo be consistent; however, as is the case here, they may not be
however, with a careful analysis of the FD-IMLS for one-, two-, because of the low-amplitude oscillations that are characteristic
and three-dimensional potentials. We do this within the context of polynomials. For another example of this behavior, see Table
of previous worké14-36.39 much of which is based on the 1 of ref 39, where the same discrepancy between the rms
Shepard method. Thus, we demonstrate the advantages of theleviations in the energies and gradients for somevas
present method by making direct comparisons with Shepard observed. For somethe best fit for energies does not give the
interpolation. best fit for the gradients.

The differences in the quality of the fits are illustrated in As in the 1-D case, the method gives a good fit for the 2-D
Figure 1 where we make direct comparisons of the Shepardand 3-D surfaces. However, it is important to note that it was
and present methods by superimposing 1-D fits on the “exact” necessary to use a different weight function for each case. The
potential curve (as a functioR at & = 0° andr = 2.0ap) critical point is that when irregularities in the fit occur they can
computed with the Koizumi et &IPES. In Figure 1a, in which  be due to a poor choice of the form the weight function, the
the Shepard fit (solid curve) is compared with the exact curve values of the parameters in it, or, of course, the number and
(dashed curve), we see that the “flat-spot” problem results in distribution of points. These issues are illustrated by the results
an obviously bad fit. The comparison for the FD-IMLS fit (solid in Tables 1 and 2, where the rms deviations for energies and

0.15 4

Energy (hartree)

0.00 T T T T T T T
1.5 2.0 2.5 3.0 35 4.0 4.5 5.0 5.5

R (H-NN)

0.20

0.10 +

Energy (hartree)

0.05

0.00 T T T T T T
1.8 20 25 3.0 3.5 4.0 4.5 5.0 5.5

5.08p, 2.08p < r < 2.639, andf = 45°, for the two-dimensional

fits. We used internuclear distancegH—N), ro(N—N), and
rs(H—N) for the calculation of 3-D surface. Taking advantage
of symmetry, we fit the surface over the range for which the
Koizumi et al® analytical function is valid: 0& < r; < 6.3ay,

2.0ap < rp; < 2.6ap, 0.729 < r3 < 6.330.*2 We used equally
spaced data points along each axes, with increments of 0.2, 0.15
or 0.1.
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Figure 2. Fitted (by the FD-IMLS method) and actual (Koizumi et
al®) potential-energy surfaces fétN, — H + N; as a function of the
H—NN and N-N distances fol§ = 45°, for (a) 64, (b) 105, and (c)
217 data points. The rms deviations are given in Tabla %+ 3) for
the three fits shown here.

Maisuradze and Thompson

TABLE 1: Root-Mean-Square (rms) Deviations of Potential
Energies (in hartree) and Gradients (in au) between the
Fitted and Exact® 2-D Surfaces for 18361 Points

rms®
Ng2 € nb potential gradients
64 1x 104 3 7.86x 1073 7.14x 1072
64 1x10°° 5 1.09x 102 7.68x 1072
105 1x 10°° 3 4.25x 1078 5.36x 1072
105 3x 1077 5 6.29x 1073 5.46x 1072
217 5x 1077 3 1.77x 1078 3.97x 1072
217 1x 108 5 3.44x 1073 4.25x 1072

aThe total number of data point3The weight function parameters,
see eq 14¢ Root-mean-square deviation based on 18 361 points.

TABLE 2: Root-Mean-Square (rms) Deviations of Potential
Energies (in hartree) and Gradients (in au) between the
Fitted and Exact® 3-D Surfaces for 407 050 Points

rmg*

N2 I nP potential gradients

2688 1x 104 6.52x 1073 6.56 x 1072
2688 1x 1073 7.83x 103 6.15x 102
4590 2x 1075 3.74x 1078 5.08 x 1072
4590 1x 10°6 5.08x 1073 4.87x 1072
11914 1x 10°® 1.57x 1073 3.15x 1072
11914 1x 108 2.32x 103 2.89x 102

gwolwow

aThe total number of data point3The weight function parameters,
see eq 14¢ Root-mean-square deviation based on 407 050 points.

TABLE 3: The Root-Mean-Square (rms) Deviations of
Potential Energies (in hartree) and Gradients (in au) in the
Vicinity of IRC between the Interpolated and Koizumi et
Al.5 3-D Surface for 49 120 Points

rmg

N2 & nP potential gradients

3070 3x 1076 3 2.23x 1078 3.87x 1072
3070 5x 1078 5 2.81x 103 3.98x 10?2

aThe total number of data point3The weight function parameters,
see eq 14¢ Root-mean-square deviation based on 49 120 points.

gradients for different numbers of data points and weight
function parameters are given. The choice of the values of the
weight function parameters is based on the smoothness of
gradient surfaces.

We should emphasize that we have fit “global” surfaces; that
is, we fit the entire range of geometries covered by the analytical
PES. That is why the numbers of data points used in our fitting
are large compare to the numbers of data points used by
other$§14-28.31.32.3%yho have restricted their fits to the vicinity
of the intrinsic reaction coordinates (IRC). Thus, for a more
direct comparison we did some fits of the PES in the vicinity
of the IRC. Koizumi et af.have described the properties of the
HN2 minimum and H--N, saddle point on the ab initio and
analytical surfaces. Since the energy at the saddle point is 0.69
eV for the analytical surface, we have restricted the FD-IMLS
fit to energies below that value. The rms deviations based on
49 120 points for energies and gradients between the exact, i.e.,
the Koizumi et al5 and 3-D fitted surfaces in the neighborhood
of the IRC are given in Table 3. To fit the potential in the
vicinity of the IRC we needed only25% as many data points
as used in the fitting of the “global” 3-D surface. Again, the fit
is better for the weight function parameter= 3 than forn =

Figure 3(a) shows a comparison of gradient surfaces calcu-
lated by the FD-IMLS method and the exact poteftialthe
vicinity of the IRC. These 2-D surfaces are functions of
internuclear distanceas andrs (r, = 2.1ag). The rms deviation
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Figure 3. (a) 2-D gradient surface slices as a function of thandrs for r, = 2.1a, in the vicinity of IRC for HN, — H + N_. The top surface
represents the gradients computed by using the Koizumi%etade, and the bottom surface is obtained by FD-IMLS fitting to 77 points. (b) The

gradients as a function af for ry = 3.65 andr, = 2.1ay,. The solid curve was calculated by using the Koizumi ét@de, and the dash and
dash-dot curves are FD-IMLS fits based on 11 and 21 points, respectively.

between the surfaces is 9.261072 au, which compares well  requires less CPU time can compensate for this drawback. In
to the rms deviations for gradients obtained in other, related other words, the CPU time spent computing the extra data points
methods*® When the number of data points along each axis can be regained in the fitting, and certainly in direct dynamics
(step is 0.05) is doubled, the rms deviation for the gradients is simulations this could be critically important.
2.36 x 1072 au. Again, this compares favorably with the results
in ref 39. The quality of the fits are illustrated in Figure 3b, 5 Conclusions
where we show the gradients as a functiomsdbr r; = 3.65
andr, = 2.1ay. The solid curve was calculated by using the We have presented a fitting method for PESs based on first-
Koizumi et al® code, and the dash and dastot curves are  degree IMLS, and have tested it for one-, two-, and three-
FD-IMLS fits based on 11 and 21 points, respectively. dimensional potentials. Our objective was to develop a method
Although we cannot directly compare our results to those that eliminates the “flat-spot” phenomenon observed in Shepard
given in ref 39, it is clear that we need more points for the interpolation and that does not require derivatives as does
FD-IMLS fitting to achieve a comparable accuracy to that modified Shepard interpolation. Furthermore, our goal was to
obtainable by SD-IMLS. But the FD-IMLS method has some develop a simple algorithm that is not expensive in CPU time
advantages for applications to the many-atom systems. Theso that it could be useful in trajectory calculations. These
number of basis functions in the SD-IMLS method fbatoms objectives are achieved with the approach described in section
is (N + 1)(N + 2)/2; for example, for a triatomic system 10 2. We have shown the advantages of this method over the
basis functions are needed, whereas in the FD-IMLS method Shepard approach. Unlike the modified Shepard method, the
only four basis functions are required. A practical illustration present method was tested for fitting of global 2-D and 3-D
of this is that in the study of the 4PES by SD-IMLS method, surfaces as well as the region in the vicinity of the IRC.
authors have been forced to employ a modified Shepard methodAlthough the SD-IMLS method gives a better fit than does the
for trajectory calculations, because SD-IMLS is somewhat time FD-IMLS for the same number of data points, the simplicity of
consuming. the FD-IMLS and the fact that it requires less CPU time can
Although, more data points are needed for the FD-IMLS compensate for this drawback.
fitting than in the SD-IMLS method in order to obtain the same  The results given by this first-degree IMLS application to a
quality fit, the simplicity of the FD-IMLS and the fact that it PES of one-, two-, and three-dimensions are encouraging. They
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motivate a more detailed look at the application of higher-degree Cambridge University Press: Cambridge, 1996.

IMLS methods to the fitting of PESs. Among the many issues 19%4)10320?227"\"- J. T.; Thompson, K. C.; Collins, M. &.Chem. Phys
that have to be resolved are the tradeoffs between IMLS degree, ™ (15) jordan, M. 3. T.; Thompson, K. C.; Collins, M. & Chem. Phys
fit accuracy, computational efficiency, and weight function 1995 103 9669.

selection, as well as the scalability of these tradeoffs with  (16) Jordan, M. J. T.; Collins, M. AJ. Chem. Phys1996 104, 4600.

increasing PES dimension. Future papers in this series will ,(L7) Thompson, K. C.; Collins, M. AJ. Chem. SacFaraday Trans.

> . 1997, 93, 871.
systematically take up these issues. (18) Thompson, K. C.; Jordan, M. J. T.; Collins, M. A.Chem. Phys
1998 108 564.
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