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We present a method based on interpolating moving least-squares (IMLS) that is designed for efficient and
accurate local fitting of discrete energy values to provide global representations of potential energy surfaces
(PESs) for many-atom systems. We have demonstrated the method with one-, two-, and three-dimensional
fits of the HN2 f N2 + H PES. To allow for extensive fitting and testing, the analytical PES developed by
Koizumi et al. [Koizumi, H.; Schatz, G. C.; Walch, S. P.J. Chem. Phys.1991, 95, 4130] was used to generate
energy values. Unlike the modified Shepard method this approach does not require derivatives, thus it can be
used to fit energies computed using highest-level quantum chemistry methods for which forces are not directly
obtainable. This fitting scheme accurately describes the PES, is not computationally time-consuming, can be
improved by using higher degrees and larger numbers of basis functions, and is straightforward to apply.
Extension to many-dimensional PESs seems promising.

1. Introduction

The speed with which quantum chemistry calculations can
now be done allows for the direct use of ab initio forces in
molecular dynamics simulations. This has obvious advantages
over using global analytical representations, which involves the
tedious, arduous task of selecting appropriate functions and then
adjusting many parameters. Despite the ease with which direct
dynamics simulations can be done, the approach is not generally
applicable. A major lingering problem, which will be solved in
time, is that the levels of theory that must be used to make the
calculations feasible are often inadequate for reactions. The error
in ab initio results is dealt with in fitting schemes by simply
scaling them to empirical data. Even when high-level quantum
results are accurate, it is not always possible to directly compute
the ab initio forces needed for the trajectory integrations. Despite
the prospects for straightforward ab initio dynamics simulations,
there is still a need to develop better methods for fitting analytic
potential energy surfaces (PESs).

Fitting ab initio PESs is still more an art than a science. It
requires considerable skill and insight to select the best analytical
functions and a lot of persistence to adjust the parameters. Global
functions offer simplicity at the expense of flexibility. That
prompted us in the 1970s to propose use of a scheme based on
local fitting with cubic splines.1 They provide a very flexible
and numerically efficient approach to fitting a surface with
smooth first and continuous second derivatives. They have
mainly been used to fit 3-D surfaces,2-7 because they require a
fairly high density of points for a good fit. The challenge is to
achieve highly accurate, smooth fits of ab initio data with small
numbers of data points and adjustable parameters. Significant
progress has been made over the past decade in developing
systematic, general methods for achieving such fits.8-10 Perhaps
the more useful approaches are the interpolating moving least-
squares (IMLS) methods, which have been extensively applied
to small systems. Ischtwan and Collins8 introduced a much more

practical local fitting approach in 1994. It is based on a modified
Shepard interpolation,11 the simplest case of IMLS. The Shepard
method12,13 is a zero-degree IMLS method (ZD-IMLS). A
serious problem with ZD-IMLS, referred to as the “flat-spot”
phenomenon, is that the derivative of the interpolant is zero at
every data point. This prevents the straightforward use of the
Shepard method; however, the “flat-spot” problem can be
avoided by using Taylor expansions instead of just data points.11

An attractive feature of the IMLS approach is that it can be
coupled with dynamics simulations to bias the fitting. Ischtwan
and Collins8 have applied a modified Shepard interpolation
method, which requires the derivatives at the data points, for
constructing PESs by combining it with classical trajectory
simulations in an iterative scheme for successively improving
the surface. This iterative procedure places new data points in
regions of the surfaces that are important dynamically, and, most
importantly, the procedure is inherently simple and can be
completely automated. The gradients and Hessians required in
this method are not available in higher-level ab initio calcula-
tions. This approach has been refined and applied to various
reactions by several groups.14-37

Apart from the Taylor series, the higher-degree IMLS
methods13 can be used to solve the “flat-spot” problem.
McLain38 studied two-dimensional fits for some simple functions
using zero-, first-, second-, third-, and forth-degree IMLS
methods. His fits were based on a tradeoff of accuracy against
computing time. Ishida and Schatz39 presented a scheme in
which a second-degree IMLS (which we will refer to as SD-
IMLS) method is combined with Shepard interpolation. The
reason for using the higher-degree IMLS method is to avoid
the need for derivatives. The scheme has two steps: first is the
evaluation of first and second derivatives at the data points by
the SD-IMLS method. In the second step, Shepard interpolation
is used to evaluate energies and derivatives at other geometries
using the information obtained from the first step.

The interpolation method presented here is the higher-degree
IMLS approach directly applied to the fitting of PESs. This
approach can be regarded as a natural generalization of the
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Shepard interpolation that leads to the elimination of the “flat-
spot” problem. It can be regarded as an extension of McLain’s
work38 to chemically relevant problems. It can be regarded as
a simplification of Ishida and Schatz’s work39 in that no
calculation of the energy gradient and second derivatives, as
required by the modified Shepard interpolation, is performed.
A full evaluation of higher-order IMLS methods for fitting PESs
requires the resolution of many issues. What is the interplay of
degree/accuracy/computational efficiency? How do the form and
parameter values of the weight function (explicit in all IMLS
methods) affect that interplay? How does ab initio point selection
affect that interplay? What are the scaling properties of the
method as the dimensions of the PES rise? What are the
advantages and disadvantages of this method compared to
competitive methods? This paper willnot attempt to answer all
these questions. Rather it will develop a simple first-degree
IMLS fit to a chemically realistic PES in order to see if the
quality of the fit and the simplicity of the method merit a more
detailed evaluation of the general high degree IMLS approach.
This paper thus constitutes an initial or preliminary report on
the approach.

We chose for our test PES, the analytic function developed
by Koizumi et al.5 for the simple HN2 f H + N2 dissociation
reaction. We selected an analytical PES to avoid the more costly
procedure of calculating ab initio points. This allowed us to do
extensive testing of variations of the scheme while making direct
comparisons of fits to the “exact” potential. Since the Koizumi
et al.5 PES is a close fit to an extensive set of ab initio points,
this test case is fully realistic. The triatomic HN2 f H + N2 is
a bond fission reaction, making for a rather smooth PES of low
dimensionality that is appropriate for an initial test of a fitting
method. The focus of this study was on determining the best
local fitting functions and procedure; thus we have applied the
scheme to one-, two-, and three-dimensional sections of the
surface.

The method is described in Section 2, the fitting scheme to
obtain the global potential in Section 3, the application of the
method to HN2 in Section 4, and a summary and the conclusions
in Section 5.

2. Method

Before describing the IMLS method, it is useful to review
the least-squares and weighted least-squares methods. We follow
Lancaster and Salkauskas13 and discuss the basic aspects of these
methods for the one-dimensional case.

Consider data that consists ofN + 1 abscissas{xi; i ) 0, 1,
..., N} with ordinates{fi; i ) 0, 1, ...,N}. The polynomialsp(x)
) ∑i ) 0

m aixi, wherep(x) ε Pm andm e N (Pm denotes the set of
all polynomialsp with degree not exceedingm, together with
the zero polynomial), are used to fit the data, with the deviation
of p(xi) from fi at xi beingp(xi) - fi. The sum of the squared
deviations for anyp ε Pm is

The best least-squares fit is obtained by finding a polynomialp
ε Pm for which E is minimized.

In the weighted least-squares method the value ofg, the
function used to fit the curve, at a pointx is determined by
giving greater weights to the datafi at pointsxi that are closest
to x. Thus, instead of eq 1 we minimize

where wi(x) are positive weight functions with asymptotic
behaviorwi(x) f ∞ as x f xi. The most popular choices for
the weight functions are

wheren is a small positive integer.
The normal equations are found by considering them + 1

necessary conditions∂Ex/∂ai ) 0, i ) 0, 1, ...,m:

The polynomial giving the lowest value toEx can be defined
by solving eq 4 and using these solutions as the coefficients
for the polynomial. We should note that the normal equations
for the least-squares method can be obtained from eq 4 by the
choice of weightswi(x) ) 1, i ) 0, 1, ...,N.

It is customary, useful, and convenient to write eq 4 in the
matrix-vector form:

whereB is aN × (m + 1) matrix, andBT is its transpose,W is
an N × N diagonal matrix, anda and f are column vectors.
They have the following forms:

In the highly unusual case ofm ) N, eq 5 can be simplified
to B‚a ) f, sinceB is then a square matrix with a well-defined
inverse. Note thatW does not appear in this simplification
because the number of unknown parameters is exactly equal to
the number of constraints and the least-squares procedure can
exactly satisfy the constraints no matter what weight they are
assigned. The matrixB, which is known as a Vandermonde
matrix, is ill conditioned,13 and a direct algebraic approach is
not recommended for a general-purpose computer code (even
for the simplest case of normal equations); rather than use matrix
inversion one should use a more reliable numerical method, e.g.,
the singular value decomposition (SVD) method.13

Whenm ) 0, the normal equations, eq 4, reduce to a single
equation:

Ex(p) ) ∑
i)0

N

[p(xi) - fi]
2 (1)

Ex(p) ) ∑
i)0

N

wi(x)[p(xi) - fi]
2 (2)

wi(x) ) 1

(x - xi)
2n

(3a)

wi(x) )
exp[-(x - xi)

2]

(x - xi)
2n

(3b)

[∑wi(x)xi
0]a0 + ... + [∑wi(x)xi

m]am ) ∑wi(x)fI

[∑ wi(x)xi]a0 + ... + [∑wi(x)xi
m+1]am ) ∑wi(x)xifi

l

[∑wi(x)xi
m]a0 + ... + [∑wi(x)xi

2m]am ) ∑wi(x)xi
mfi

(4)

BT‚W‚B‚a ) BT‚W‚f (5)

B ) [1 x0 ... x0
m

1 x1 ... x1
m

l
1 xN ... xN

m] a ) [a0

a1
l
am] f ) [f0f1l

fN]
W ) diag[w0(x),w1(x),...,wN(x)] (6)

a0(x) ) ∑
i)0

N

wi(x)fi / ∑
i)0

N

wi(x) (7)
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This equation is credited to Shepard.12 Whenwi(x) ) (x - xi)-n

with n > 0, it is easy to see that for 0< n < 1 the interpolating
curve has cusps at the data points, forn ) 1 the fitted curve
has corners at the data points, and forn > 1 it exhibits the
“flat-spot” phenomenon, that is, the derivative of the interpolant
is zero at the data points (see section 4). There are several causes
of this. First of all, there is a singularity in one of the elements
of weight functionW and the coefficients of eq 5 are not defined
at data points, which causes the lack of smoothness near the
data points not only in the Shepard method but also in higher-
degree IMLS methods (see section 4). There are two different
ways to resolve this problem. First, to avoid arithmetic overflow,
McLain38 suggested using (x - xi)2n + ε instead of (x - xi)2n

in the denominator of the weight function in eq (3b); that is,

whereε is a small positive number. Also, the singularities of
W can be avoided by dividing both sides of eq 5 by∑i)0

N wi(x),
then eq 5 becomes

where V ) diag[V1(x),V2(x),...,VN(x)] and Vj(x) ) wj(x)/
∑i)0

N wi(x), j ) 1,2,...,N. The Vj(x) are normalized weight
functions and have the following properties:

(1) Vi(xj) ) δij (Kronecker delta) fori, j ) 1, 2, ...,N;
(2) 0 e Vi(x) e 1 for all x andVi(x) ) 0 if and only if x )

xj and j * i;
(3) ∑i)0

N Vi(x) ) 1 for all x; and
(4) Vi(x) f N-1 asd(x,0) f ∞.
We followed McLain’s suggestion in this work. The intro-

duction of ε removes the singularity in the Shepard method,
but the “flat-spot” problem persists for small enough values of
ε.

There is a way to solve the “flat-spot” problem without
sacrificing the quality of the fitting.13 Consider them ) 1 case,
for which eq 4 gives a pair of normal equations:

The interpolation function has the form

wherea1(x) anda0(x) can be obtained from eq 10. If the weight
function is not singular, then this function is free of “flat-spot”
problems. The same is true for all higher-degree forms of IMLS.

To construct an IMLS method for surfaces, which is similar
to the procedure considered above for the one-dimensional case,
we introduce the basis functions (monomials) for three classes
of three-variable polynomials (the monomials for two-variable
polynomials are easily obtainable by deleting one variable):

For convenience the notation (x,y,z) for a point on the 3-D
surface is abbreviated tol, hence the data points are denoted
by li ) (xi,yi,zi), i ) 1, 2, ...,N. Let b1(l), b2(l), ...,bn(l) (n e N)

denote linearly independent functions defined on the whole 3-D
surface. For example, according to eq 12, the least-squares
approximation with bivariate quadratic polynomials requires 10
of these functions (for a 2-D surface it is six).

The interpolant has the form:

where thea1, a2, ...,an coefficients can be determined from the
normal equations in the same manner as in the one-dimensional
case, only with replacingx by l.

The Euclidean distance between pointsl ) (x,y,z) and li )
(xi,yi,zi) is

Since the weighting depends on the distance between points,
the weightsw1(l), w2(l), ..., wN(l) will depend on the function
w(d), wherew f ∞ asd f 0 and vice versa. It is clear that the
weight functions are similar to those for the one-dimensional
case eq 8; withd replacingx - xi, it has the form

whereR is a positive number.
As in the one-dimensional case, we consider an interpolant

with four basis functions for the 3-D surface (three monomials
for 2-D) to avoid the “flat-spot” phenomenon. Thus, we have
four normal equations and the interpolant has the form

wherea1(x,y,z), a2(x,y,z), a3(x,y,z), anda4(x,y,z) can be defined
from the normal equations. The functions given in eqs 11 and
16 are the fitting functions used in the method presented in this
paper. We will refer to this as the first-degree IMLS (FD-IMLS)
method.

We will have occasion to calculate gradients with the FD-
IMLS method. For convenience, the gradients will be calculated
by central finite differencing.

Our calculations were performed on the IBM RS/6000 7043
model 260 workstations (512 MB memory, one 200 MHz
processor) and took only a few seconds to fit the 2-D and 3-D
“global” surfaces.

3. Potential Energy Values

Although our focus is on methods that can be used to fitab
initio energies to obtain “analytical” representations, we have
chosen to avoid the expense of carrying out quantum chemistry
calculations. Instead, we have used an analytical function to
compute points that we then fit or use to evaluate the fits. This
permits more extensive testing of the method than we could
have done had we usedab initio points.

The data points used in the fitting and evaluations of the
results were obtained from the global function for the reaction
HN2 f N2 + H developed by Koizumi, Schatz, and Walch.5

This global potential is based on the rotated Morse oscillator
approach40,41 and is written in terms the coordinatesR, r, and
θ; whereR is the distance between the H and the center of mass
of N2, r is the N-N distance, andθ is the angle between the
Jacobi vectorsR andr , such thatθ ) 0° corresponds to linear
HNN. We computed points that span the ranges 2.0a0 e R e

u(l) ) ∑
j)1

n

aj(l)bj(l) (13)

d(l,l i) ) x(x - xi)
2 + (y - yi)

2 + (z - zi)
2 (14)

w(d) ) e-Rd2
/(d2n + ε) (15)

u(x,y,z) )
a1(x,y,z) + a2(x,y,z)x + a3(x,y,z)y + a4(x,y,z)z (16)

wi(x) )
exp[-(x - xi)

2]

(x - xi)
2n + ε

(8)

BT‚V‚B‚a ) BT‚V‚f (9)

[∑wi(x)]a0 + [∑wi(x)xi]a1 ) ∑wi(x)fi

[∑wi(x)xi]a0 + [∑wi(x)xi
2]a1 ) ∑wi(x)xifi (10)

g(x) ) a1(x)x + a0(x) (11)

P0 1

P1 1 x y z

P2 1 x y z x2 y2 z2 xy xz yz (12)
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5.0a0, 2.0a0 e r e 2.6a0, andθ ) 45°, for the two-dimensional
fits. We used internuclear distancesr1(H-N), r2(N-N), and
r3(H-N) for the calculation of 3-D surface. Taking advantage
of symmetry, we fit the surface over the range for which the
Koizumi et al.5 analytical function is valid: 0.7a0 e r1 e 6.3a0,
2.0a0 e r2 e 2.6a0, 0.7a0 e r3 e 6.3a0.42 We used equally
spaced data points along each axes, with increments of 0.2, 0.15,
or 0.1.

4. Results

The main goal in this initial study was to test the FD-IMLS
method. We eventually want a fitting method that is highly
accurate and applicable to many-dimensional systems. We begin,
however, with a careful analysis of the FD-IMLS for one-, two-,
and three-dimensional potentials. We do this within the context
of previous work,8,14-36,39 much of which is based on the
Shepard method. Thus, we demonstrate the advantages of the
present method by making direct comparisons with Shepard
interpolation.

The differences in the quality of the fits are illustrated in
Figure 1 where we make direct comparisons of the Shepard
and present methods by superimposing 1-D fits on the “exact”
potential curve (as a functionR at θ ) 0° and r ) 2.0a0)
computed with the Koizumi et al.5 PES. In Figure 1a, in which
the Shepard fit (solid curve) is compared with the exact curve
(dashed curve), we see that the “flat-spot” problem results in
an obviously bad fit. The comparison for the FD-IMLS fit (solid

curve) is shown in Figure 1b and clearly illustrates a better
(though not perfect) representation of the potential. The average
absolute rms deviation between the fitted curve and 301 exact
points, computed with the Koizumi et al.5 PES, is 9.34× 10-4

hartree. We have used 61 data points in the fitting with the
weight function given by eq 8 withn ) 5 andε ) 1.5× 10-13.

We calculated the gradients of the energy (numerically) to
examine the smoothness of potential. The average absolute rms
deviation for the gradients is 1.82× 10-2 au for 301 points.

In Figure 2 the FD-IMLS fit of the 2-D HN2 (θ ) 45°)
potential using different numbers of data points are superim-
posed on the exact surface computed by using the Koizumi et
al.5 analytic function. The fits in Figure 2 were obtained by
using the weight function of eq 15, withn ) 3, R ) 0.08, and
ε ) 1 × 10-4 (64 data points),ε ) 1 × 10-5 (105 data points),
andε ) 5 × 10-7 (217 data points). Figure 2a,b,c illustrates a
direct comparison of the exact surface with those obtained by
FD-IMLS fitting using 64, 105, and 217 data points, respec-
tively. The fit is worst in the areas close to the edges of the
surface. The fit improves with increasing number of data points
as the results in Figure 2 illustrate. Also, a much better fit could
be obtained by using a nonuniform grid; however, we have not
explored this since our purpose here was to make direct
comparisons to demonstrate the present method.

A quantitative comparison of the two surfaces is more
meaningful, thus we computed the average absolute rms
deviations of the potential and gradients between the exact
surface5 and surfaces constructed by FD-IMLS fitting using
different numbers of data points and values of the parameters
(ε, n) in the weight function, eq 15. The rms deviation for the
two best fits, i.e., best choices of values forε andn, are given
in Table 1. The average absolute rms deviations of the values
of the potential energy and gradient are based on 18 361 points.
As expected, the rms error decreases with increasing number
of data points. The fit with weight function parametern ) 3 is
better than that withn ) 5. The difference in the rms values
for n ) 3 andn ) 5 is larger for the potential than for the
gradients.

We have also used the FD-IMLS method to fit the 3-D PES
for HN2. We calculated points that span the ranges given in
section 3. Again, we computed the average rms deviations of
the potential and the gradients between the Koizumi et al.5

surface and the FD-IMLS fits for different numbers of data
points (2688, 4590, 11 914) and weight function parameters (n
) 3 and 5). Table 2 shows the rms values based on 407 050
points. It is clear that the fit improves with increasing of number
of data points. The rms values for the energy are better forn )
3 than forn ) 5. However, for the gradients it is the opposite.
One might expect the fitting errors for the potential and gradients
to be consistent; however, as is the case here, they may not be
because of the low-amplitude oscillations that are characteristic
of polynomials. For another example of this behavior, see Table
1 of ref 39, where the same discrepancy between the rms
deviations in the energies and gradients for somen was
observed. For somen the best fit for energies does not give the
best fit for the gradients.

As in the 1-D case, the method gives a good fit for the 2-D
and 3-D surfaces. However, it is important to note that it was
necessary to use a different weight function for each case. The
critical point is that when irregularities in the fit occur they can
be due to a poor choice of the form the weight function, the
values of the parameters in it, or, of course, the number and
distribution of points. These issues are illustrated by the results
in Tables 1 and 2, where the rms deviations for energies and

Figure 1. Potential energy for HN2 f H + N2 alongR for θ ) 0°
andr ) 2.0a0. The dash lines present curves calculated by Koizumi et
al.5 code and the solid lines correspond to (a) Shepard interpolation
and (b) FD-IMLS.
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gradients for different numbers of data points and weight
function parameters are given. The choice of the values of the
weight function parameters is based on the smoothness of
gradient surfaces.

We should emphasize that we have fit “global” surfaces; that
is, we fit the entire range of geometries covered by the analytical
PES. That is why the numbers of data points used in our fitting
are large compare to the numbers of data points used by
others8,14-28,31,32,39who have restricted their fits to the vicinity
of the intrinsic reaction coordinates (IRC). Thus, for a more
direct comparison we did some fits of the PES in the vicinity
of the IRC. Koizumi et al.5 have described the properties of the
HN2 minimum and H‚‚‚N2 saddle point on the ab initio and
analytical surfaces. Since the energy at the saddle point is 0.69
eV for the analytical surface, we have restricted the FD-IMLS
fit to energies below that value. The rms deviations based on
49 120 points for energies and gradients between the exact, i.e.,
the Koizumi et al.,5 and 3-D fitted surfaces in the neighborhood
of the IRC are given in Table 3. To fit the potential in the
vicinity of the IRC we needed only∼25% as many data points
as used in the fitting of the “global” 3-D surface. Again, the fit
is better for the weight function parametern ) 3 than forn )
5.

Figure 3(a) shows a comparison of gradient surfaces calcu-
lated by the FD-IMLS method and the exact potential5 in the
vicinity of the IRC. These 2-D surfaces are functions of
internuclear distancesr1 andr3 (r2 ) 2.1a0). The rms deviation

Figure 2. Fitted (by the FD-IMLS method) and actual (Koizumi et
al.5) potential-energy surfaces forHN2 f H + N2 as a function of the
H-NN and N-N distances forθ ) 45°, for (a) 64, (b) 105, and (c)
217 data points. The rms deviations are given in Table 1 (n ) 3) for
the three fits shown here.

TABLE 1: Root-Mean-Square (rms) Deviations of Potential
Energies (in hartree) and Gradients (in au) between the
Fitted and Exact5 2-D Surfaces for 18361 Points

rmsc

Nd
a εb nb potential gradients

64 1× 10-4 3 7.86× 10-3 7.14× 10-2

64 1× 10-5 5 1.09× 10-2 7.68× 10-2

105 1× 10-5 3 4.25× 10-3 5.36× 10-2

105 3× 10-7 5 6.29× 10-3 5.46× 10-2

217 5× 10-7 3 1.77× 10-3 3.97× 10-2

217 1× 10-8 5 3.44× 10-3 4.25× 10-2

a The total number of data points.b The weight function parameters,
see eq 14.c Root-mean-square deviation based on 18 361 points.

TABLE 2: Root-Mean-Square (rms) Deviations of Potential
Energies (in hartree) and Gradients (in au) between the
Fitted and Exact5 3-D Surfaces for 407 050 Points

rmsc

Nd
a εb nb potential gradients

2688 1× 10-4 3 6.52× 10-3 6.56× 10-2

2688 1× 10-5 5 7.83× 10-3 6.15× 10-2

4590 2× 10-5 3 3.74× 10-3 5.08× 10-2

4590 1× 10-6 5 5.08× 10-3 4.87× 10-2

11914 1× 10-6 3 1.57× 10-3 3.15× 10-2

11914 1× 10-8 5 2.32× 10-3 2.89× 10-2

a The total number of data points.b The weight function parameters,
see eq 14.c Root-mean-square deviation based on 407 050 points.

TABLE 3: The Root-Mean-Square (rms) Deviations of
Potential Energies (in hartree) and Gradients (in au) in the
Vicinity of IRC between the Interpolated and Koizumi et
Al.5 3-D Surface for 49 120 Points

rmsc

Nd
a εb nb potential gradients

3070 3× 10-6 3 2.23× 10-3 3.87× 10-2

3070 5× 10-8 5 2.81× 10-3 3.98× 10-2

a The total number of data points.b The weight function parameters,
see eq 14.c Root-mean-square deviation based on 49 120 points.
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between the surfaces is 9.16× 10-3 au, which compares well
to the rms deviations for gradients obtained in other, related
methods.39 When the number of data points along each axis
(step is 0.05) is doubled, the rms deviation for the gradients is
2.36× 10-3 au. Again, this compares favorably with the results
in ref 39. The quality of the fits are illustrated in Figure 3b,
where we show the gradients as a function ofr3 for r1 ) 3.65a0

and r2 ) 2.1a0. The solid curve was calculated by using the
Koizumi et al.5 code, and the dash and dash-dot curves are
FD-IMLS fits based on 11 and 21 points, respectively.

Although we cannot directly compare our results to those
given in ref 39, it is clear that we need more points for the
FD-IMLS fitting to achieve a comparable accuracy to that
obtainable by SD-IMLS. But the FD-IMLS method has some
advantages for applications to the many-atom systems. The
number of basis functions in the SD-IMLS method forN atoms
is (N + 1)(N + 2)/2; for example, for a triatomic system 10
basis functions are needed, whereas in the FD-IMLS method
only four basis functions are required. A practical illustration
of this is that in the study of the H3 PES by SD-IMLS method,
authors have been forced to employ a modified Shepard method
for trajectory calculations, because SD-IMLS is somewhat time
consuming.

Although, more data points are needed for the FD-IMLS
fitting than in the SD-IMLS method in order to obtain the same
quality fit, the simplicity of the FD-IMLS and the fact that it

requires less CPU time can compensate for this drawback. In
other words, the CPU time spent computing the extra data points
can be regained in the fitting, and certainly in direct dynamics
simulations this could be critically important.

5. Conclusions

We have presented a fitting method for PESs based on first-
degree IMLS, and have tested it for one-, two-, and three-
dimensional potentials. Our objective was to develop a method
that eliminates the “flat-spot” phenomenon observed in Shepard
interpolation and that does not require derivatives as does
modified Shepard interpolation. Furthermore, our goal was to
develop a simple algorithm that is not expensive in CPU time
so that it could be useful in trajectory calculations. These
objectives are achieved with the approach described in section
2. We have shown the advantages of this method over the
Shepard approach. Unlike the modified Shepard method, the
present method was tested for fitting of global 2-D and 3-D
surfaces as well as the region in the vicinity of the IRC.
Although the SD-IMLS method gives a better fit than does the
FD-IMLS for the same number of data points, the simplicity of
the FD-IMLS and the fact that it requires less CPU time can
compensate for this drawback.

The results given by this first-degree IMLS application to a
PES of one-, two-, and three-dimensions are encouraging. They

Figure 3. (a) 2-D gradient surface slices as a function of ther1 andr3 for r2 ) 2.1a0 in the vicinity of IRC for HN2 f H + N2. The top surface
represents the gradients computed by using the Koizumi et al.5 code, and the bottom surface is obtained by FD-IMLS fitting to 77 points. (b) The
gradients as a function ofr3 for r1 ) 3.65a0 and r2 ) 2.1a0. The solid curve was calculated by using the Koizumi et al.5 code, and the dash and
dash-dot curves are FD-IMLS fits based on 11 and 21 points, respectively.
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motivate a more detailed look at the application of higher-degree
IMLS methods to the fitting of PESs. Among the many issues
that have to be resolved are the tradeoffs between IMLS degree,
fit accuracy, computational efficiency, and weight function
selection, as well as the scalability of these tradeoffs with
increasing PES dimension. Future papers in this series will
systematically take up these issues.
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